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Recent developments in the analysis of Langevin equations with multiplicative (di¢gare reported. In
particular, we(i) present numerical simulations in three dimensions showing that the MN equation exhibits,
like the Kardar-Parisi-Zhan(KPZ) equation, both a weak coupling fixed point and a strong coupling phase,
supporting the proposed relation between MN and K@#Z;present a dimensional and mean-field analysis of
the MN equation to compute critical exponen(s;) show that the phenomenon of the noise-induced ordering
transition associated with the MN equation appears only in the Stratonovich representation and not in the Ito
one; and(iv) report the presence of a first-order-like phase transition at zero spatial coupling, supporting the
fact that this is the minimum model for noise-induced ordering transiti@H&63-651X99)00207-X

PACS numbes): 05.40—a

[. INTRODUCTION of the previous observation, we predicted and later confirmed
the existence of NIOTs in one-dimensional systems.

The idea that noise can induce rather nontrivial effects On the other hand, the MN Langevin equation has been
when added to deterministic equations is no longer considproved to be related to the Kardar-Parisi-Zh&al&Z) equa-
ered a shocking one. Some recently uncovered phenometian describing nonequilibrium surface growth8]. In fact,
have familiarized us with the idea that strange physicaby performing a so-called Cole-Hopf transformation, the MN
mechanisms induced by noise are not as infrequent as preMiangevin equation becomes the KPZ equation with an extra
ously thought. Stochastic resonaridg, resonant activation wall that limits the maximum value of the height6,17,19.

[2], noise-induced spatial patterfi3], noise-enhanced mul- |n this way, the critical point of the MN equation is related to
tistability in coupled oscillatorf4], and noise-induced phase 3 wetting transition In fact, for large values of the control
transitions[5—-8] are just a few examples. In particular, a lot parameter, the surface escapes from the limiting wall and
of attention has been devoted in recent years to the study ¢fohaves as a KPZ surface, while for smaller values of the
phase transitions appearing in systems of which the assoclyniro| parameter there is a phase in which the surfeets
ated deterministic part does not exhibit any symmetry bréakg,o a1 and remains bound to it. Separating both phases,
ing. These studies were mostly limited to one-variable SYSthere is a critical point at which the surface gets depinned or

tems [9] until an interesting paper by Van den Broeck, L . ;
Parrondo and Tora[5,10] (see also[6]). These authors unbounc{l?,zq. Th!s cr|t|ca_1l point may be either a \{vea!< or
a strong coupling fixed point depending on the noise inten-

howed th ibility of having noise-in ransitions in_. : ) .
showed the possibility of having noise-induced transitions ity and on the system dimensionality.

spatially extended systems, and illustrated the physica? ) . .
mechanism originating this phenomenon: A short time insta-. In th's paper we pontlnge to eXp|0re the Langevin equa-
bility is generated owing to the noise, and the generated norfion with mulnpllcatlve noise from different perspectives.
trivial state is afterwards rendered stable by the spatial couln® paper is structured as follows. _ _ _
pling [10]. In this way, by increasing the noise amplitude the !N Sec. Il we present the MN Langevin equation, discuss
|nstab|||ty is enhanced, and the system becomes more ar‘@ connection with KPZ, and define the critical eXponentS. In
more ordered: A noise-induced ordering phase transitioec. Ill, we present dimensional analysis and predictions for
(NIOT) is generated. In the model presentedShthe NIOT  the mean-field exponents. In Sec. 1V, by exploiting the con-
was followed on further increasing of the noise amplitude bynection with KPZ we try to observe numerically whether the
a second phase transition. At larger noise amplitudes, th¥IN equation exhibits strong noise and weak noise fixed
usual role of the noise as a disorganizing source takes oveoints[18,21—-23 in dimensions larger than 2. In Sec. V we
and the system becomes again disordered. This is what wanalyze the MN equation from the Ito-Stratonovich dilemma
call a noise-induced disordering transitiofiDT). The same  point of view and find out that the NIOT is specific to the
type of behavior has been found in other modéls—-13. Stratonovich representation and cannot be obtained when the
In a recent papdrl4] (see alsd15]) we put forward that basic Langevin equation is intended in the Ito sense. In Sec.
the NIOT and the NIDT have different origin. The NIOT is VI we show evidence of a first-order phase transition at zero
induced by multiplicative noise, while the NIDT is due to the value of the spatial coupling. That is, the system that in the
presence of additive noiseven though it can also be gen- absence of spatial coupling is disordered, develops a finite
erated in a somehow artificial way by multiplicative noise value of the order parameter even for infinitesimal values of
[14]). In this way we proposed the Langevin equation withthe spatial coupling constant. For all the previously studied
multiplicative noise[16,17], interpreted in the Stratonovich models, the spatial coupling has to be above a certain non-
sense, as a new minimal model for NIOT. As a consequenceero value to observe ordering. This supports the MN as the
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minimal model exhibiting a NIOT. Finally some conclusions wall). In this case the stationary value ¢ftakes a nonvan-

are presented. ishing value. Separating both regimes, there is a critical point
whose nature has been analyzedlif,17. Some exponents,
Il. MODEL DEEINITION AND CONNECTION WITH KPZ nonexistent for KPZ, can be defined for MN. For example, if

] ) ] o ] ~ mis the averaged order parametérthe correlation length,
In this section we define the multiplicative noise Langevingnd r the correlation time, we have

equation, and review some of its properties and connections

with KPZ. The MN equation is E~la—ag(o)|™, (5

dp=—ay—pyP 1+ DVt ayy 1) ~|a—ag(o)|", (6)

intended in the Stratonovich sense, whei(g,t) is a field, m(a)~|a—a.(o)|Pa 7
a, p, D, and o are parameters, ang a Gaussian white ¢ '

noise with m(o)~|o—o(a)|P, 8)

{(n(x.1)=0, m(t,a=a,,oc=0.)~t % 9

oY\ — _ 2 ! _t!
(n(x D n(x".1)=(1=ay?) dx=x)o(t-t"). () Some of these exponents can be related to KPZ exponents
using scaling argumentsl6,17. For example, ifz is the

The Fokker-Planck equation associated with this reads - . .
quat ! w ! dynamic exponent in KPZ, it was proved ji7] that v,

dP((x),t) S " , =1/(2z—2) and3,>1. On the other hand, using straight-
—at —J dX&/;(x) [—ay—pyP " +DVy] forward scaling relations we have= 8,/v; and v;=2zv, .
Some other exponents can be defined in analogy with
o2 what is customary in the study of systems with absorbing
XP((x), D)+ 7f dxm states[26]. These are the so-called spreading or epidemic
exponents. To measure them one places an initial seed in an
1) otherwise absorbing configuration and studies the evolution
Xy(1=ay?) 5¢(X)¢V(1_a¢’2) of the space integral ofs, N(t), the surviving probability
P(t), and the mean square deviation from the oriBf{t).
X P((x),1). (3) At the critical point these scale as
To simplify things, we could just consider tlhe=0 case N(t)~t7, (10
for which we recover th@ure multiplicative noisexquation
analyzed i 16,17. The equation withwe>0 was introduced P(t)~t~?, (12
in [14] as a prototype model exhibiting not only a NIOT but
also a NIDT. That is, the order parameter does not keep on R2(t)~t?, (12

growing as noise amplitude is increas@s happens in the

case ofa=0). Instead, it reaches a maximum value after thewhere 5, 8, andz’ =2/z are the spreading exponents. The

NIOT, and decreases upon further increasing the noise anfellowing scaling law is expected to ho[@7,28:

plitude, until a NIDT transition appears and the systems

comes back to a disordered state. Phenomena of this type are n+ 6+ 60=dz'/2. (13

often called “reentrant transitions.” ) ) ) _
Although, in principle, we could work in the simplest case Searching for power-law behaviors of the spreading magni-

a=0, for technical reasons most of the numerical resultudes is a very precise way to determine the critical point.

present in what follows are obtained fer=1, but it is worth Given the aforementioned connections between MN and
stressing that, apart from the presence of the NIDT, none dfPZ, it is not surprising that their respective
the (universa) results depend om. renormalization-group(RG) flow diagrams[16] resemble

By performing a Cole-Hopf transformatiom € exph), each other very much. In particular, for both of thm,lq
this equation(with a«=0) reduces to at any dimension larger thati=2 there are two different

attractive fixed points{i) a mean field or weak coupling
dh(x,t)=—a—pexpph)+DV2h+D(Vh)?+ 5. (4) (weak noise in the MN languagdixed point at which the

nonlinear parameter vanishes, afi) a strong coupling
This is just a KPZ equation for a surface, defined by the(strong noise in the MN languagenontrivial fixed point, not
height variablen(x,t), except for the exponential term. This accessible to standard perturbative technid@ds29. This
acts as a wall repellinfp from positive to negative values means that, in particular, id=3 there are two different
[24]. For large values oh the surface escapes linearly in phases depending on the noise intensity: For small intensities
time from the wall and, therefore, asymptotically any effectthe system is in a weak coupling phase characterized by
of it is lost and the equation reduces to KPZ. In termsjof mean-field-like exponents. For noise intensities above a cer-
the unbounded phase corresponds to the absorbing phatsen critical threshold the system is in(eough strong cou-
characterized by a vanishing value of its stationary ordepling phase.
parameter value. On the other hand, for small enough values The multiplicative noise equation has been studied nu-
of a the surface remains bound to the waill wetting the  merically ind=1, and it was found that in fact the predicted
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TABLE I. Table of critical indices obtained from numerical absorbing statéi.e., in the unbound phaséecays continu-
simulations. In the second column we report results fordhkel ously to zero, but never reaches that valirefact, h goes
case. In the three-dimensional weak noise pitesied column the  continuously to minus infinity, and for any finite though
exponents are in very good agreement with the expected mean fielgrge value ofh, n takes a nonzero valiieTherefore, the
values. The last column reports the numerical values obtained igyrviving probability is equal to unity and the dimension of
this work for the three-dimensional exponents in the strong noisgpe response field is zerd,=0, (i.e., it scales as a constant
phase. [27,17; this implies thats=0. Consequentlyl,=d, which
at the critical dimension isl,=2; and thereforgusing that

d 1 3 (Weak noisg 3 (Strong noisg . . .

Ba 1.5+0.1 0.97-0.05 2.5:0.1 the dimension ofis 2)

B 0.9+0.1 1.0£0.01 1.2:0.1 m~[a]fa—s2=28,—B,=1. (17)

z 1.52+0.03 2.06:0.05 1.670.03

i —-0.4+0.1 —0.1+0.05 —0.5+0.1 Analogously B,=1. Observe that these results depend on
0 1.1+0.1 1.0:0.1 2.0:0.1 the nature of the noise, and are independent of the degree of
Vy 1.0:0.1 0.50-0.05 0.75:-0.03 the nonlinearity in Eq(2), i.e., onp. This gives us justifica-

tion of the fact observed numericall{7] that Eq.(2) gives

the same exponents for different values of the nonlinegrity
relations with KPZ hold. The best values for the different(this same property is also shared by the exactly solvable
critical exponents are reported in Table I. However, as saidero dimensional cad&2]).

before, there is no roughening transitiondr 1, and conse- On the other hand, it is interesting to observe that naive
quently it has not been observed so far in systems with MNmean-field approximations, not coming from power counting
In what follows, we present the results of extensive numeriof the generating functional, give the wrong resgjt= 3,

cal simulations performed in three-dimensional systems. By=1/p. In particular, in the Appendix, we present different
changing the noise amplitude we intend to observe the tw@ypes of mean-field approaches, all of which lead to the same
different phases: one with exponents related to the strongyrong) prediction for the critical exponerg. The origin for
coupling 3 KPZ exponents, and the other related to meanthe failure of standard mean-field approaches is a rather deli-

field (i.e., Edward Wilkinsor{22,23)) exponents. cate issue. We believe this is based on the fact that even in
the weak noise regime the stationary probability distribution
Ill. SCALING ANALYSIS AND MEAN-FIELD RESULTS is nontrivial; in particular, it is nonsymmetric and its mean

value is typically far away from the most probable one. A

Let us start discussing in this section the mean-field Pr€qetailed analysis of this and related issues will be discussed

dictions for the previously defined exponents, which alreadyelsewhere.

pr_lei\sent SOTE mter_estllng_ fe?tttj_res, a??h'n :ﬂe ne;_t section v;/e Regarding the rest of the critical indices, the mean-field
will present numerical simuiations of the three- ImenSIOnapredic:tions are as followsy is the anomalous dimension of

model. the field, and therefore it vanishes in the mean-field approxi-

th ;’.S flrtsrt] present stqme fnalvtc_e scallllng argu[ngn:s. For th%ation where no diagrammatic corrections are taken into ac-
we define the generating functional associated to @. count. For the same reason, just considering naive power

[30.31, counting argumentg’' =1, z=2, v,=1/2, andf=1.
Z=J Dy D¢ eXD(—f dx dtﬁ), (14 IV. NUMERICAL RESULTS: THE ROUGHENING
TRANSITION

with £ given by In this section we describe the results of extensive nu-

merical simulations of Eq(2) performed using the Heun
o+ pzpp*l—vzip}. method(see[33] and references therginFor that purpose,
(15 space and time have been discretized using meshes of

=1 (space and €=0.001 (time), respectively, and have

Using naive dimensional arguments, the dimensions of thxedp=2.Ind=1 we have choseD=0.2 anda=1, while
time t,dt1 the field lib’dlll’ the response f|e|dﬁ,d¢, and in d=2 andd=3 we takeD=1 anda=1 (Weak noise re-

0-2’do_2 expressed as a function of momerﬂiaverse of glme) ora=18 (Strong noise regin)eln all dimensions we
length are verify that the system exhibits a NIOT as well as a NIDT for

a>0.

2

£:7¢ o+ @l o+ a—?

d=-2, d,+d,=d, d,2+2d—d—2=0—d,.=2—d.
(16) A d=1

From this, we conclude that the noise amplitude is marginal We consider a system size=1000, D=0.2, anda=1;

at the critical dimensiom.=2, irrelevant above it and rel- the space and time meshes are, as said previously, 1 and

evant belowd=2, and this result does not depend on the0.001, respectively.

degree of the other nonlinearity, i.e., pn We determine some exponents, the values of which have
As was shown i27], the surviving probability in general not been previously reported in the literature, in particular

systems with absorbing states scales as the response field. 8y, and some others with improved precision, and illustrate

the case of multiplicative noise the particle density in thethe methods employed to compute them.
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FIG. 1. Order parameten as a function ofr in the vicinity of
the critical point ford=1.

In order to determine accurately the location of the critical
point o, (keepinga fixed and varyings) and the critical
exponentB,, we determine numerically the order parameter
as a function ofr (see Fig. 1 In order to measure the order
parameter, we let the system evolve long enough that th
stationary state is reached. Then we wribe= (o — o)Pe
and take as a critical point the value @fthat maximizes the
linear correlation coefficient when representingnih@@s a
function of In(e—o,) (see Figs. 2 and)3 From the corre-
sponding slope we determing, (Fig. 3). In particular, we
obtaino,=1.81+0.07 andB,=0.9+0.1.

In order to determine the exponept,, defined asm
x(a,—a)”a, we fix c=0,, and diminisha to stay in the
active phase. Then we follow a maximization of the linear

correlation coefficient procedure similar to the one describe(g

above. In that way we measur@.=1.04+0.01 and B,
=1.5+0.1.

Right at the critical point the order parameter decays i
time asm(t)=t~ % In order to have an independent estima-
tion of the critical point we plot the local slope of the aver-
aged magnetization as a function of 1ér different values
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FIG. 2. Linear correlation coefficient when fitting imY in d
=1 as a function of Inf—o), for different values ofo,. The
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FIG. 3. Order parameten as a function of §— o) (on a log-

log scale in d=1. The slope gives the critical indeg,=0.9
+0.1.

of o (see Fig. 4. It is clear that the curve for=1.8 (o
1.7) curves upwarddownward and corresponds to the
active (absorbing phase; the critical point is located around
3C~1.75, slightly smaller than the previously determined
value, but compatible with that value within accuracy limits.
The intersection point at tl# 0 of the central curve gives the
value of the exponen; §=1.1+0.1.

In order to measure spreading exponents, we consider
much larger system sizes. Simulations are stopped when the
activity arrives at any of the system boundaries. In this way
we have determined’, 7. Using the previously obtained
valuedo.=1.75, we measurg’ =1.25+0.10 andnp=—-0.4
+0.1. The standard critical exponents z=2/z' =1.6+0.1
ompatible with the KPZ valug= 1.5 (in an analogous dis-
crete model argued to be in the same MN universality class,
which is expected to converge faster to its asymptotic behav-

Nor, we measuredz=1.52+0.03 [19], which remains the

most accurate estimate faj. For this system the exponent
v, has been already measured numericillf,19; the result
v,=1 is in agreement with the theoretical predictidi®].

0.0

o(t)

-2.0
0.000

1 1
0.001 0.002 0.003

¢

FIG. 4. Local slopef(t), of Inm(t) as a function of Ir, plotted

maximum of this curve gives the best estimation for the criticalas a function oft ™. The extrapolated value at'=0 gives the

point o.=1.81+0.07.

value of 9, §=1.1+0.1.
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FIG. 5. In(m) as a function of Inf—o) in d=3 witha=1 and FIG. 6. Log-log plot ofR%(t) as a function oft at the critical
p=2. The slope gives the critical inde%,=1.00+0.01. point for d=3 and a=1. From the slope we obtaiz’=1.00
+0.01.

See Table | for a complete list of the best exponent estimates )
to date[17,19,14. Observe that all the scaling relatiofis- Fixing o=1.418 we have measuredfor different values

cluding that for spreading exponentge satisfied within nu- of a, with a<1. The linear correlation co_efficier_lt of a log-
merical accuracy. log plot of the order parameter versais a. is maximum for

a.=0.995+-0.010, and the corresponding slope giv8s
=0.97*£0.05, also compatible with its mean-field valgg
=1 (see Fig. 7.

We have performed simulations =2 systems with Therefore, summing up, all the exponent in the weak
L?=1600, and confirmed the presence of a phase transitionoise regime are in good agreement with their corresponding
(as was already observed [ifh4]), but have not performed mean-field values, and their expected scaling relations are
extensive analysis to determine accurately the critical exposatisfied.
nents. Atd=2 there are two fixed points of the RG for KPZ:

a trivial, unstable one at zero noise amplitude to which cor- 2. The strong noise phase
respond, obviously, mean-field exponents, and a stable, .
rough phase one, with nontrivial exponents for any nonvan- NOW We take a large value @ namelya=18, for which

ishing noise amplitude. Instead of analyzing this case witf€ transition is expected to occur at a large value of the
only one stable fixed point, we preferred to analyze ahe NOIS€ amplitude, and therefore to be controlled by a strong

priori more interesting three-dimensional case. noise fixed pointstrong coupling, in the KPZ languagéVe
find the critical point to be located at,=7.2+0.3 andg,,

C d=3 =1.2+0.1 (see Fig. 8 Observe that contrary to the weak
' noise case, now the critical value ofis renormalized; the
In the three-dimensional simulations we consider systemnean-field prediction is.= \2a=6.
sizes up toL®*=64000 and periodic boundary conditions.
The space and time meshes are 1 and 0.001, respectively. _g6 . . . ,

The spatial coupling constant B=1. 4 numerical results P!
v - - ¥ linear interpolation yd

1. The weak noise phase -07 b Py 1

B.d=2

We fixa=1. For this small value we expect the transition v
to occur at a small value af, and therefore to be controlled o8l Y i
by the weak noise fixed poirliveak coupling, in the lan- g 7
guage of KPZ In the weak noise regime the mean-field £ -
predictions(see the Appendixare expected to be exact, and -09 -~ 1
therefore fora=1 one should have 4 ¢?/2=0, implying -
o= J2. In fact, following the same procedure described in e
the one-dimensional case, the best estimation of the critical o * i
point is o.= 1.420+ 0.002 (the deviation fromo.= /2 is a
finite-size effect and the slope of a log-log plot of the order ] . .
parameter versus— o gives 8,=1.00+=0.01 (see Fig. 5. 06 05 "Mln(a _a)‘“ -02

The order parameter time-decay expongrg found to be ¢
6=1.0+0.1, while for z' and » we measurez’'=1.00 FIG. 7. In(m) as a function of Iré.—a) and its corresponding
*+0.01 (see Fig. 6 and »=—0.1£0.1. Using scaling rela- linear interpolation fom=1, c=1.418, andd=3. From the slope
tions we estimater,=0.50+ 0.05. we measure8,=0.97+0.05.
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&4 numerical results
¥ - - ¥ linear interpolation
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01
In (o~0)
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Using v,= B,/(z0) and introducing the measured values
of B4, 0, andz, we determinev,=0.76x0.03 in excellent
agreement with our previous estimation. This provides a test
for the accuracy of our measurements.

In conclusion, we have verified numerically the existence
of two different regimes for the MN equation exhibiting dif-
ferent values of the critical exponents, and related, respec-
tively, to the weak and strong coupling regimes of the KPZ
equation.

V. ITO-STRATONOVICH DILEMMA

In order to study the dependence of the NIOT on the type
of interpretation, in the sense of the Ito-Stratonovich di-
lemma, of the Langevin equation, let us now consider(Ey.
intended in the Ito sense. It is obvious that an equation com-

FIG. 8. Log-log plot of the stationary value of the order param- pletely equivalent to E¢2), i.e., with exactly the same phys-

eterm as a function ofr— o for a=18 andd=3. From the slope

we measurg8,=1.2+0.1.

ics, can be written in the Ito interpretation using the well
known transformation ruleg35,36. The problem we study
here is different; we analyze the same multiplicative noise

Following the previously described methods, we obtaink@ngevin equation in a different interpretation, i.e., Ito in-

#=2.0+0.1, and for the spreading exponerzs=1.20 Stead of Stratonovich. o o _
+0.01 andy=—0.5=0.1 (the best power-law fits for the ~ BY repeating the mean-field-like approximations dis-
spreading exponents are obtained for=6.875 slightly cuss_ed in the Appe_ndlx, but using the Ito interpretation, one
smaller than the critical value obtained from the order pa°btains the same final results E¢A3), and (A12) just by
rameter analysjs Using the value of', we obtainz=2/z'  Substituting ¢*/2—a) by —a. Therefore, for positive defi-
—1.67+0.03, in excellent agreement with the best estimanite |n|_t|al condltlons,_a_nq posmvg values af(i.e., values
tion for the strong noise phase of KPZ i3, namelyz ~ for which the deterministic equation has=0 as the only
=1.695[34]. And applying the scaling law relating and solution), there is nonontr|\(|al so_Iut|on. Th|s_|nd|cates that
v, We obtainv,=0.75+ 0.03. On the other hand, the hyper- theNIOT dlsappears when |nteqd|ng the MN in thg IFo sense
scaling relation for spreading exponents Etf) is not ex- and therefore, in the Stratonovich interpretation it is due to

pected to hold above the upper critical dimension where darfn® €ffective shift of thea-dependent term in the stationary

gerously irrelevant operators should affec{®1] and, in probability distribution when multiplicative noise is intro-
fact, introducing the values obtained numerically one ob-duced. In the same way, it is also straightforward to verify by

serves that it is clearly violated.

Fixing o to its critical value and varying, we obtain
B.=2.5+0.1(see Fig. % in particular,B,=1 in agreement
with the prediction made ifil6]. Contrary to the mean-field
predictions, we observe that in the strong noise reggpe

# B -
22 T '
&4 numerical results
+ -~ linear interpolation
27+
g
c -3z -~
,/’.ﬂ
e
.//
rd
//
g /
/"
d d
,/
4
-42 " '
“o4 -02 o0
In(a-a)

FIG. 9. In(m) as a function of Irf.—a) and its corresponding
linear interpolation for=6.875 anda.= 18.05, ford=3. From the

slope we determin@,=2.5+0.1.

performing a linear stability analysis that the homogeneous
solution=0 is stable, contrary to what happens in the Stra-
tonovich interpretation. The presence of an instability had
been identified as a key ingredient to generate noise induced
transitions(see[14] and references thergimand therefore in

the absence of it no ordering is expected in the Ito interpre-
tation. We have verified this prediction in numerical simula-
tions.

VI. COUPLING CONSTANT DEPENDENCE

In this section we pose the question of what is the mini-
mum value of the coupling necessary to obtain a NIOT. As
pointed out in[10,5], the NIOT appears due to the interplay
between a short time instability and the presence of a spatial
coupling that renders stable the generated nontrivial state. In
all the previously discussed models exhibiting a NIOT and a
NIDT, there are critical values @ below which no ordering
is possible. In order to determine whether there is a crifical
in our model, we have studied it oh=1 by changingd with
fixed a=1 (the forthcoming results are qualitatively inde-
pendent of the value of). In Fig. 10 we show a sketchy
phase diagram, the outcome of systematic numerical simula-
tions.

There is a large interval of values af for which the
system exhibits dirst-order transition atD=0; i.e., as soon
as an arbitrarily small spatial coupling is switched on, the
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VII. CONCLUSIONS

Line of scond order Line of second order We have presented some recent results on Langevin equa-
phase trans.  (NIT) phase trans.  (RT) tions with multiplicative noise. In particular, we have studied
numerically the presence of two different regimes: weak and
strong noise regimes, ith=3. All the predicted scaling laws
and relations with KPZ exponents in their respective weak
coupling and strong coupling fixed points are verified. On
the other hand, we have shown that the noise-induced order-
ing transition associated with Langevin equations with mul-
tiplicative noise is specific to the Stratonovich representa-
Disordered Phase tion, and that these noise-induced ordering transitions are
obtained even for arbitrarily small values of the spatial cou-
pling constant, supporting the fact that the Langevin equation
with pure multiplicative noise is the minimal model for
noise-induced ordering transitions.

ORDERED PHASE

Line of first order
phase transitions

o

FIG. 10. Schematic phase diagram in the planel)) for the
MN Langevin equation. The rightmost line of second-order phase
transitions moves to the right asis reduced, and goes to in the
limit «=0, indicating that the NIDT disappears. ACKNOWLEDGMENTS

system gets orderefor D=0 the only stationary state is We acknowledge useful discussions with P. Garrido, G.
m=0). In Fig. 11 the order parameter is plotted as a functiorGrinstein, Y. Tu, T. Hwa, J. M. Sancho, L. Pietronero, R.
of 1/D for a value ofe in this interval; observe how even for Dickman, G. Parisi, and R. Toral. We thank Claudio Castel-
values as small =107, m takes a large value of about lano and R. Pastor-Satorras for a critical reading of the
0.15. manuscript. This work has been partially supported by the
The fact that there is a large interval for which the sys-M. Curie Foundation under Contract No. ERBFM-
tems become ordered as soon as a spatial coupling BICT960925, the TMR “Fractals” Network Project No.
switched on, a property that was absent in all the previousfEMRXCT980183, and by the Ministerio de Educatiander
studied models for NIOT, is a new indication that the MN Project No. DGESEIC, PB97-0842.
equation is the minimal model for NIOT, and that the asso-
ciated ordering mechanism is not mixed up with other un-
necessary ingredients.
For values ofa out of the previously discussed interval, APPENDIX
the system exhibits &econd-orderphase transitions at a

value ofD,D(c), defining Bp by In this Appendix we present some different mean-field

approximations to evaluate the order parameter exponent for
both =0 anda>0.

Defining the averaged magnetizationmasin the limit of
large dimensionalities the discretized Laplacian operator can
we obtain D;=0.094+0.003 andBp=0.08+0.03 for the pe written as

particular choice of parameteas=o=5.

moc(D—D,)Pp, (18

0.5 T T T
Vig=1/2d > = d=m—ih;. (A1)
04 J i.NoN.
03 r ~ ) Using this approximation, and determining in a self-
£ T consistent way, it is possible to obtain an analytical solution
oz | R ] of the Langevin equation. In what follows we present differ-
[ — ent calculations corresponding to infinite and finite values of
* the spatial couplind, respectively. In both cases the ob-
01l . tained value of the critical exponegy is 1/p.
T T3 I TS 10°
1D 1. Infinite spatial coupling limit: D— o
FIG. 11. Order parameten as a function of 1 for o=10 and Using the previous approximation, writing down the sta-

a=1. The curve converges to a constant for large values bf 1/ tionary probability distribution, solution of the associated

(this is for small couplings indicating that atD=0 there is a Fokker-Planck equatior35,36, and imposing the self-
first-order phase transition. consistent requirememh= (), we obtain
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f(m)
3
f(m)

2 3 (Y 0.2 04 0.6 0.8
m

FIG. 14. Solution of the mean-field theory far>0. Observe
that contrary to what happens in Fig. 13, here the intersection point
between the curves for different values @fand the straight line
y=m reaches a maximum value after which it starts decreasing.

FIG. 12. The solutionin, of the self-consistency equation is the
intersection point betweeg=f(m) [where f(m) represents the
function on the right-hand side of E¢A5)] andy=m.

d wd F+D(m—y)-GG'/2 The NIOT transition is predicted at?/2=a with an associ-
yypexp| dy >
[ 0 G-/2 (A2) ated exponenB,=B,=1/p.
m= ’
fd fwd F+D(m—¢)—GG'/2
[ vexp 0 4 G2/2 2. Finite spatial coupling

In order to make sure that the previous result is not due to
the approximation involved in considerin@ —o, we
present here an analogous calculation for finite value.of

where F=F(y)=—ay—pyP™t (G=G(y)=y\1—ay?)  In this case, the associated asymptotic stationary probability
is the deterministi¢noise part of Eq.(1). For large values of s
D the integral can be evaluated in the saddle point approxi-

mation[5,10], giving b ocw‘l‘(z"fz)(am)exp( B 2Dm)exp< —ilﬁp)
o] 2 2 L)
g o
(Ad)
1 0_2 1/p
m= E(7_a (A3) " Wwherem has to be fixed self-consistently by imposing
=(¢). This is
3 . . . 04 T T T T
.-"A
' L N g
, L « ] Tty
[ J A,
A I A i
g g o2 A A, A i i
A
tr o T A
‘ o1+ 4
0 o , , 00 Lt L . . .
1 2 3 4 5 0 10 20 30 40 50
c o
FIG. 13. m as a function ofs in mean-field theory withe=0. FIG. 15. m as a function ofo- in mean-field theory withw>0.

The points here correspond to the intersection of the curves in th&he points here correspond to the intersection of the curves in the
previous figure with the linen= f(m). The critical point is located previous figure with the linen=f(m). The critical point is located
atoZ=2. ato2=2.
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m= .
o 2Dm 2
d —1—2(a+D)/02eX _ _ b
fo W o’y o v

(A5)

The numerical solution of this last equation for parameter
valuesa=1, D=1, andp=1 is shown in Fig. 12 and Fig.

13.
In order to derive the exponep, in this MF approxima-
tion we define the following change of variables:

) 1 2 2( D) 2Dm
=—, a=—, =—(a , = .
l// 0'2 4 0'2 H 0'2
(A6)

Equation(A5) can be written as

)z P e a

A y—2 gt — —

) 1/<9MIn{ fo dtt ex;{ ut tpl (A7)

RECENT RESULTS ON MULTIPLICATIVE NOISE e

for 6>0. This calculation is valid only ify+p/2>1. At the

end of the calculation we will verify that this constraint is

verified. EquationA7) can be simply expressed as

H (1p)

p
‘y+§—1)

aD=2ap +(y—1). (A1l

uP

HEP 'y-f-g—l

From this we find the solutiop.=0 corresponding tan
=0 and ifo?/2 —a=0 a second solution exists with

HE 1"’[1(&
—|—5—a
2HP) |p

0_2

2D

(A12)

This solution confirms the results obtained in tBe—o
case; namelya,=c?/2, for a=0, o-§:2a, and B,= B,
=1/p, which is consistent with the requiremeptt p/2>0
for all the values op rendering consistent the calculation.

3. Infinite coupling limit for a>0

Introducing a Gaussian transformation, the integral in the For completeness’ sake let us present here the mean-field

previous expression can be rewritten as

o0 + o tp 2
f dttV*Z*p’zexp{—,ut]J' dzy exp{——nﬂn
0 — 4a

+o ~dt
I,ulfyfi dzn expi 77\/4a,up)fo T tytp2-1
X exp{ —t—tP7?}
dt

=M1_’JO dn cog 7\4auP) fo L

X exp{—t—tP7?}

=M17{ HoP| y+ g—l) —2auPH P y+ g— 1)

+o (A8)

analysis in the case in which>0. In this subsection we
evaluate the infinite coupling limit.

The solutionm=0 is unstable foro?>>2a, and the new
stable solution is

1/p

{ o?—2a
= (A13)

(p)(0?+1)

Let us note that this approximation predicts a NIOT at the
same point the pure MN equatigwith «=0) does, namely
a?=al/2, but contrary to the pure model the order parameter
does not grow indefinitely by increasing noise amplitude.
Instead it saturates to a value= (p) ~*P.

4. Finite coupling for a>0

In the case of finite couplin® anda>0 we have that the
asymptotic probability defined in the intervakQ/<1 is
(for p=1)

where we have expanded the cosine function up to second

order, and we have defined

®(sy= | 2n 2
Hy () fo 77T (6,7, (A9)

» dt
Fp<5,n2>=f TUexp—t=t°»%}  (A10)
0

1— w) —Dm/o?

—[1+2(a+D)/d4

2Dm
0'21,0

X(1— :,//2) —1/2+(a+D+ 1"’2)ex;{ _

(A14)

The self-consistency equation is obtained equatimigp
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2(a+D)/o?
Joaw I+
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(1— l/jz) —1/2+(a+D+ 1/02)6—2Dm/02¢

14
[1+2(a D)/o’
f lp + + (l+w

—Dmlo? '
(1- ¢2) —1/2+(a+D+ 1/02)9—2Dm/02¢/

(A15)

Both of the integrals exhibit a singularity dt=1, but they are integrable. It is straightforward verifying that in the limit
—», m—0, and therefore for finite values Bfthis approximation predicts both a NIG@lso located air®=2a) and a NIDT

(see Figs. 14 and 15
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