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Recent results on multiplicative noise
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Recent developments in the analysis of Langevin equations with multiplicative noise~MN! are reported. In
particular, we~i! present numerical simulations in three dimensions showing that the MN equation exhibits,
like the Kardar-Parisi-Zhang~KPZ! equation, both a weak coupling fixed point and a strong coupling phase,
supporting the proposed relation between MN and KPZ;~ii ! present a dimensional and mean-field analysis of
the MN equation to compute critical exponents;~iii ! show that the phenomenon of the noise-induced ordering
transition associated with the MN equation appears only in the Stratonovich representation and not in the Ito
one; and~iv! report the presence of a first-order-like phase transition at zero spatial coupling, supporting the
fact that this is the minimum model for noise-induced ordering transitions.@S1063-651X~99!00207-X#

PACS number~s!: 05.40.2a
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I. INTRODUCTION

The idea that noise can induce rather nontrivial effe
when added to deterministic equations is no longer con
ered a shocking one. Some recently uncovered phenom
have familiarized us with the idea that strange physi
mechanisms induced by noise are not as infrequent as p
ously thought. Stochastic resonance@1#, resonant activation
@2#, noise-induced spatial patterns@3#, noise-enhanced mul
tistability in coupled oscillators@4#, and noise-induced phas
transitions@5–8# are just a few examples. In particular, a l
of attention has been devoted in recent years to the stud
phase transitions appearing in systems of which the ass
ated deterministic part does not exhibit any symmetry bre
ing. These studies were mostly limited to one-variable s
tems @9# until an interesting paper by Van den Broec
Parrondo and Toral@5,10# ~see also@6#!. These authors
showed the possibility of having noise-induced transitions
spatially extended systems, and illustrated the phys
mechanism originating this phenomenon: A short time ins
bility is generated owing to the noise, and the generated n
trivial state is afterwards rendered stable by the spatial c
pling @10#. In this way, by increasing the noise amplitude t
instability is enhanced, and the system becomes more
more ordered: A noise-induced ordering phase transi
~NIOT! is generated. In the model presented in@5# the NIOT
was followed on further increasing of the noise amplitude
a second phase transition. At larger noise amplitudes,
usual role of the noise as a disorganizing source takes
and the system becomes again disordered. This is wha
call a noise-induced disordering transition~NIDT!. The same
type of behavior has been found in other models@11–13#.

In a recent paper@14# ~see also@15#! we put forward that
the NIOT and the NIDT have different origin. The NIOT
induced by multiplicative noise, while the NIDT is due to th
presence of additive noise~even though it can also be gen
erated in a somehow artificial way by multiplicative noi
@14#!. In this way we proposed the Langevin equation w
multiplicative noise@16,17#, interpreted in the Stratonovic
sense, as a new minimal model for NIOT. As a conseque
PRE 601063-651X/99/60~1!/69~10!/$15.00
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of the previous observation, we predicted and later confirm
the existence of NIOTs in one-dimensional systems.

On the other hand, the MN Langevin equation has be
proved to be related to the Kardar-Parisi-Zhang~KPZ! equa-
tion describing nonequilibrium surface growth@18#. In fact,
by performing a so-called Cole-Hopf transformation, the M
Langevin equation becomes the KPZ equation with an e
wall that limits the maximum value of the height@16,17,19#.
In this way, the critical point of the MN equation is related
a wetting transition. In fact, for large values of the contro
parameter, the surface escapes from the limiting wall a
behaves as a KPZ surface, while for smaller values of
control parameter there is a phase in which the surfacewets
the wall and remains bound to it. Separating both pha
there is a critical point at which the surface gets depinned
unbound@17,20#. This critical point may be either a weak o
a strong coupling fixed point depending on the noise int
sity and on the system dimensionality.

In this paper we continue to explore the Langevin eq
tion with multiplicative noise from different perspective
The paper is structured as follows.

In Sec. II we present the MN Langevin equation, discu
its connection with KPZ, and define the critical exponents.
Sec. III, we present dimensional analysis and predictions
the mean-field exponents. In Sec. IV, by exploiting the co
nection with KPZ we try to observe numerically whether t
MN equation exhibits strong noise and weak noise fix
points@18,21–23# in dimensions larger than 2. In Sec. V w
analyze the MN equation from the Ito-Stratonovich dilemm
point of view and find out that the NIOT is specific to th
Stratonovich representation and cannot be obtained when
basic Langevin equation is intended in the Ito sense. In S
VI we show evidence of a first-order phase transition at z
value of the spatial coupling. That is, the system that in
absence of spatial coupling is disordered, develops a fi
value of the order parameter even for infinitesimal values
the spatial coupling constant. For all the previously stud
models, the spatial coupling has to be above a certain n
zero value to observe ordering. This supports the MN as
69 ©1999 The American Physical Society
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70 PRE 60WALTER GENOVESE AND MIGUEL A. MUÑOZ
minimal model exhibiting a NIOT. Finally some conclusion
are presented.

II. MODEL DEFINITION AND CONNECTION WITH KPZ

In this section we define the multiplicative noise Langev
equation, and review some of its properties and connect
with KPZ. The MN equation is

] tc52ac2pcp111D¹2c1sch ~1!

intended in the Stratonovich sense, wherec(x,t) is a field,
a, p, D, and s are parameters, andh a Gaussian white
noise with

^h~x,t !&50,

^h~x,t !h~x8,t8!&5~12ac2!d~x2x8!d~ t2t8!. ~2!

The Fokker-Planck equation associated with this reads

dP„c~x!,t…

dt
52E dx

d

dc~x!
@2ac2pcp111D¹2c#

3P„c~x!,t…1
s2

2 E dx
d

dc~x!

3cA~12ac2!
d

dc~x!
cA~12ac2!

3P„c~x!,t…. ~3!

To simplify things, we could just consider thea50 case
for which we recover thepure multiplicative noiseequation
analyzed in@16,17#. The equation witha.0 was introduced
in @14# as a prototype model exhibiting not only a NIOT b
also a NIDT. That is, the order parameter does not keep
growing as noise amplitude is increased~as happens in the
case ofa50!. Instead, it reaches a maximum value after
NIOT, and decreases upon further increasing the noise
plitude, until a NIDT transition appears and the syste
comes back to a disordered state. Phenomena of this typ
often called ‘‘reentrant transitions.’’

Although, in principle, we could work in the simplest ca
a50, for technical reasons most of the numerical resu
present in what follows are obtained fora51, but it is worth
stressing that, apart from the presence of the NIDT, non
the ~universal! results depend ona.

By performing a Cole-Hopf transformation (n5exph),
this equation~with a50) reduces to

] th~x,t !52a2p exp~ph!1D¹2h1D~¹h!21h. ~4!

This is just a KPZ equation for a surface, defined by
height variableh(x,t), except for the exponential term. Th
acts as a wall repellingh from positive to negative value
@24#. For large values ofa the surface escapes linearly
time from the wall and, therefore, asymptotically any effe
of it is lost and the equation reduces to KPZ. In terms oc
the unbounded phase corresponds to the absorbing p
characterized by a vanishing value of its stationary or
parameter value. On the other hand, for small enough va
of a the surface remains bound to the wall~or wetting the
ns

n

e
m-
s
are

s

of

e

t

ase
r

es

wall!. In this case the stationary value ofc takes a nonvan-
ishing value. Separating both regimes, there is a critical p
whose nature has been analyzed in@16,17#. Some exponents
nonexistent for KPZ, can be defined for MN. For example
m is the averaged order parameter,j the correlation length,
andt the correlation time, we have

j;ua2ac~s!unx, ~5!

t;ua2ac~s!un t, ~6!

m~a!;ua2ac~s!uba, ~7!

m~s!;us2sc~a!ubs, ~8!

m~ t,a5ac ,s5sc!;t2u. ~9!

Some of these exponents can be related to KPZ expon
using scaling arguments@16,17#. For example, ifz is the
dynamic exponent in KPZ, it was proved in@17# that nx
51/(2z22) andba.1. On the other hand, using straigh
forward scaling relations we haveu5ba /n t andn t5znx .

Some other exponents can be defined in analogy w
what is customary in the study of systems with absorb
states@26#. These are the so-called spreading or epidem
exponents. To measure them one places an initial seed i
otherwise absorbing configuration and studies the evolu
of the space integral ofc, N(t), the surviving probability
P(t), and the mean square deviation from the originR2(t).
At the critical point these scale as

N~ t !;th, ~10!

P~ t !;t2d, ~11!

R2~ t !;tz8, ~12!

whereh, d, and z852/z are the spreading exponents. Th
following scaling law is expected to hold@27,28#:

h1d1u5dz8/2. ~13!

Searching for power-law behaviors of the spreading mag
tudes is a very precise way to determine the critical poin

Given the aforementioned connections between MN a
KPZ, it is not surprising that their respectiv
renormalization-group~RG! flow diagrams @16# resemble
each other very much. In particular, for both of them@21,16#,
at any dimension larger thand52 there are two different
attractive fixed points:~i! a mean field or weak coupling
~weak noise in the MN language! fixed point at which the
nonlinear parameter vanishes, and~ii ! a strong coupling
~strong noise in the MN language!, nontrivial fixed point, not
accessible to standard perturbative techniques@21,29#. This
means that, in particular, ind53 there are two different
phases depending on the noise intensity: For small intens
the system is in a weak coupling phase characterized
mean-field-like exponents. For noise intensities above a
tain critical threshold the system is in a~rough! strong cou-
pling phase.

The multiplicative noise equation has been studied
merically ind51, and it was found that in fact the predicte
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PRE 60 71RECENT RESULTS ON MULTIPLICATIVE NOISE
relations with KPZ hold. The best values for the differe
critical exponents are reported in Table I. However, as s
before, there is no roughening transition ind51, and conse-
quently it has not been observed so far in systems with M
In what follows, we present the results of extensive num
cal simulations performed in three-dimensional systems.
changing the noise amplitude we intend to observe the
different phases: one with exponents related to the str
coupling 3d KPZ exponents, and the other related to me
field ~i.e., Edward Wilkinson@22,23#! exponents.

III. SCALING ANALYSIS AND MEAN-FIELD RESULTS

Let us start discussing in this section the mean-field p
dictions for the previously defined exponents, which alrea
present some interesting features, and in the next sectio
will present numerical simulations of the three-dimensio
model.

Let us first present some naive scaling arguments. For
we define the generating functional associated to Eq.~2!
@30,31#,

Z5E Dc Df expS 2E ddx dtLD , ~14!

with L given by

L5
s2

2
f2c21fF] tc1S a2

s2

2 Dc1pcp112¹2c G .
~15!

Using naive dimensional arguments, the dimensions of
time t,dt , the field c,dc , the response fieldf,df , and
s2,ds2 expressed as a function of momenta~inverse of
length! are

dt522, dc1df5d, ds212d2d2250→ds2522d.
~16!

From this, we conclude that the noise amplitude is marg
at the critical dimensiondc52, irrelevant above it and rel
evant belowd52, and this result does not depend on t
degree of the other nonlinearity, i.e., onp.

As was shown in@27#, the surviving probability in genera
systems with absorbing states scales as the response fie
the case of multiplicative noise the particle density in t

TABLE I. Table of critical indices obtained from numerica
simulations. In the second column we report results for thed51
case. In the three-dimensional weak noise phase~third column! the
exponents are in very good agreement with the expected mean
values. The last column reports the numerical values obtaine
this work for the three-dimensional exponents in the strong no
phase.

d 1 3 ~Weak noise! 3 ~Strong noise!
ba 1.560.1 0.9760.05 2.560.1
bs 0.960.1 1.060.01 1.260.1
z 1.5260.03 2.0060.05 1.6760.03
h 20.460.1 20.160.05 20.560.1
u 1.160.1 1.060.1 2.060.1
nx 1.060.1 0.5060.05 0.7560.03
t
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absorbing state~i.e., in the unbound phase! decays continu-
ously to zero, but never reaches that value~in fact, h goes
continuously to minus infinity, and for any finite thoug
large value ofh, n takes a nonzero value!. Therefore, the
surviving probability is equal to unity and the dimension
the response field is zero,df50, ~i.e., it scales as a constan!
@27,17#; this implies thatd50. Consequentlydc5d, which
at the critical dimension isdc52; and therefore~using that
the dimension ofa is 2)

m;@a#ba→252ba→ba51. ~17!

Analogouslybs51. Observe that these results depend
the nature of the noise, and are independent of the degre
the nonlinearity in Eq.~2!, i.e., onp. This gives us justifica-
tion of the fact observed numerically@17# that Eq.~2! gives
the same exponents for different values of the nonlinearitp
~this same property is also shared by the exactly solva
zero dimensional case@32#!.

On the other hand, it is interesting to observe that na
mean-field approximations, not coming from power counti
of the generating functional, give the wrong resultba5bs

51/p. In particular, in the Appendix, we present differe
types of mean-field approaches, all of which lead to the sa
~wrong! prediction for the critical exponentb. The origin for
the failure of standard mean-field approaches is a rather d
cate issue. We believe this is based on the fact that eve
the weak noise regime the stationary probability distribut
is nontrivial; in particular, it is nonsymmetric and its mea
value is typically far away from the most probable one.
detailed analysis of this and related issues will be discus
elsewhere.

Regarding the rest of the critical indices, the mean-fi
predictions are as follows.h is the anomalous dimension o
the field, and therefore it vanishes in the mean-field appro
mation where no diagrammatic corrections are taken into
count. For the same reason, just considering naive po
counting arguments,z851, z52, nx51/2, andu51.

IV. NUMERICAL RESULTS: THE ROUGHENING
TRANSITION

In this section we describe the results of extensive
merical simulations of Eq.~2! performed using the Heun
method~see@33# and references therein!. For that purpose,
space and time have been discretized using meshes oar
51 ~space! and e50.001 ~time!, respectively, and have
fixed p52. In d51 we have chosenD50.2 anda51, while
in d52 andd53 we takeD51 anda51 ~weak noise re-
gime! or a518 ~strong noise regime!. In all dimensions we
verify that the system exhibits a NIOT as well as a NIDT f
a.0.

A. d51

We consider a system sizeL51000, D50.2, anda51;
the space and time meshes are, as said previously, 1
0.001, respectively.

We determine some exponents, the values of which h
not been previously reported in the literature, in particu
bs , and some others with improved precision, and illustr
the methods employed to compute them.

eld
in
e



ca

te
r
th

a
be

i
a
r-

e
d

ed
ts.
e

ider
the

ay

ss,
av-

t

ca

72 PRE 60WALTER GENOVESE AND MIGUEL A. MUÑOZ
In order to determine accurately the location of the criti
point sc ~keepinga fixed and varyings) and the critical
exponentbs , we determine numerically the order parame
as a function ofs ~see Fig. 1!. In order to measure the orde
parameter, we let the system evolve long enough that
stationary state is reached. Then we writem5(s2sc)

bs

and take as a critical point the value ofs that maximizes the
linear correlation coefficient when representing ln(m) as a
function of ln(s2sc) ~see Figs. 2 and 3!. From the corre-
sponding slope we determinebs ~Fig. 3!. In particular, we
obtainsc51.8160.07 andbs50.960.1.

In order to determine the exponentba , defined asm
}(ac2a)ba, we fix s5sc , and diminisha to stay in the
active phase. Then we follow a maximization of the line
correlation coefficient procedure similar to the one descri
above. In that way we measureac51.0460.01 and ba
51.560.1.

Right at the critical point the order parameter decays
time asm(t)}t2u. In order to have an independent estim
tion of the critical point we plot the local slope of the ave
aged magnetization as a function of 1/t for different values

FIG. 1. Order parameterm as a function ofs in the vicinity of
the critical point ford51.

FIG. 2. Linear correlation coefficient when fitting ln(m) in d
51 as a function of ln(s2sc), for different values ofsc . The
maximum of this curve gives the best estimation for the criti
point sc51.8160.07.
l

r

e

r
d

n
-

of s ~see Fig. 4!. It is clear that the curve fors51.8 (s
51.7) curves upward~downward! and corresponds to th
active ~absorbing! phase; the critical point is located aroun
sc'1.75, slightly smaller than the previously determin
value, but compatible with that value within accuracy limi
The intersection point at 1/t50 of the central curve gives th
value of the exponentu; u51.160.1.

In order to measure spreading exponents, we cons
much larger system sizes. Simulations are stopped when
activity arrives at any of the system boundaries. In this w
we have determinedz8, h. Using the previously obtained
valuedsc51.75, we measurez851.2560.10 andh520.4
60.1. The standard critical exponentz is z52/z851.660.1
compatible with the KPZ valuez51.5 ~in an analogous dis-
crete model argued to be in the same MN universality cla
which is expected to converge faster to its asymptotic beh
ior, we measuredz51.5260.03 @19#, which remains the
most accurate estimate forz). For this system the exponen
nx has been already measured numerically@17,19#; the result
nx51 is in agreement with the theoretical prediction@16#.

l

FIG. 3. Order parameterm as a function of (s2sc) ~on a log-
log scale! in d51. The slope gives the critical indexbs50.9
60.1.

FIG. 4. Local slope,u(t), of ln m(t) as a function of lnt, plotted
as a function oft21. The extrapolated value att2150 gives the
value ofu, u51.160.1.
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PRE 60 73RECENT RESULTS ON MULTIPLICATIVE NOISE
See Table I for a complete list of the best exponent estim
to date@17,19,14#. Observe that all the scaling relations~in-
cluding that for spreading exponents! are satisfied within nu-
merical accuracy.

B. d52

We have performed simulations ind52 systems with
L251600, and confirmed the presence of a phase trans
~as was already observed in@14#!, but have not performed
extensive analysis to determine accurately the critical ex
nents. Atd52 there are two fixed points of the RG for KPZ
a trivial, unstable one at zero noise amplitude to which c
respond, obviously, mean-field exponents, and a sta
rough phase one, with nontrivial exponents for any nonv
ishing noise amplitude. Instead of analyzing this case w
only one stable fixed point, we preferred to analyze tha
priori more interesting three-dimensional case.

C. d53

In the three-dimensional simulations we consider sys
sizes up toL3564 000 and periodic boundary condition
The space and time meshes are 1 and 0.001, respecti
The spatial coupling constant isD51.

1. The weak noise phase

We fix a51. For this small value we expect the transitio
to occur at a small value ofs, and therefore to be controlle
by the weak noise fixed point~weak coupling, in the lan-
guage of KPZ!. In the weak noise regime the mean-fie
predictions~see the Appendix! are expected to be exact, an
therefore fora51 one should have 12s2/250, implying
sc5A2. In fact, following the same procedure described
the one-dimensional case, the best estimation of the cri
point is sc51.42060.002 ~the deviation fromsc5A2 is a
finite-size effect! and the slope of a log-log plot of the orde
parameter versuss2sc givesbs51.0060.01 ~see Fig. 5!.

The order parameter time-decay exponentu is found to be
u51.060.1, while for z8 and h we measurez851.00
60.01 ~see Fig. 6! and h520.160.1. Using scaling rela-
tions we estimatenx50.5060.05.

FIG. 5. ln(m) as a function of ln(s2sc) in d53 with a51 and
p52. The slope gives the critical indexbs51.0060.01.
es
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Fixing s51.418 we have measuredm for different values
of a, with a,1. The linear correlation coefficient of a log
log plot of the order parameter versusa2ac is maximum for
ac50.99560.010, and the corresponding slope givesba
50.9760.05, also compatible with its mean-field valueba
51 ~see Fig. 7!.

Therefore, summing up, all the exponent in the we
noise regime are in good agreement with their correspond
mean-field values, and their expected scaling relations
satisfied.

2. The strong noise phase

Now we take a large value ofa, namelya518, for which
the transition is expected to occur at a large value of
noise amplitude, and therefore to be controlled by a stro
noise fixed point~strong coupling, in the KPZ language!. We
find the critical point to be located atsc57.260.3 andbs

51.260.1 ~see Fig. 8!. Observe that contrary to the wea
noise case, now the critical value ofs is renormalized; the
mean-field prediction issc5A2a56.

FIG. 6. Log-log plot ofR2(t) as a function oft at the critical
point for d53 and a51. From the slope we obtainz851.00
60.01.

FIG. 7. ln(m) as a function of ln(ac2a) and its corresponding
linear interpolation fora51, s51.418, andd53. From the slope
we measureba50.9760.05.
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74 PRE 60WALTER GENOVESE AND MIGUEL A. MUÑOZ
Following the previously described methods, we obt
u52.060.1, and for the spreading exponentsz851.20
60.01 andh520.560.1 ~the best power-law fits for the
spreading exponents are obtained fors56.875 slightly
smaller than the critical value obtained from the order
rameter analysis!. Using the value ofz8, we obtainz52/z8
51.6760.03, in excellent agreement with the best estim
tion for the strong noise phase of KPZ ind53, namelyz
51.695 @34#. And applying the scaling law relatingz and
nx , we obtainnx50.7560.03. On the other hand, the hype
scaling relation for spreading exponents Eq.~13! is not ex-
pected to hold above the upper critical dimension where d
gerously irrelevant operators should affect it@31# and, in
fact, introducing the values obtained numerically one o
serves that it is clearly violated.

Fixing s to its critical value and varyinga, we obtain
ba52.560.1 ~see Fig. 9!; in particular,ba>1 in agreement
with the prediction made in@16#. Contrary to the mean-field
predictions, we observe that in the strong noise regimeba
Þbs .

FIG. 8. Log-log plot of the stationary value of the order para
eterm as a function ofs2sc for a518 andd53. From the slope
we measurebs51.260.1.

FIG. 9. ln(m) as a function of ln(ac2a) and its corresponding
linear interpolation fors56.875 andac518.05, ford53. From the
slope we determineba52.560.1.
n

-

-

n-

-

Using nx5ba /(zu) and introducing the measured valu
of ba , u, andz, we determinenx50.7660.03 in excellent
agreement with our previous estimation. This provides a
for the accuracy of our measurements.

In conclusion, we have verified numerically the existen
of two different regimes for the MN equation exhibiting di
ferent values of the critical exponents, and related, resp
tively, to the weak and strong coupling regimes of the KP
equation.

V. ITO-STRATONOVICH DILEMMA

In order to study the dependence of the NIOT on the ty
of interpretation, in the sense of the Ito-Stratonovich
lemma, of the Langevin equation, let us now consider Eq.~2!
intended in the Ito sense. It is obvious that an equation co
pletely equivalent to Eq.~2!, i.e., with exactly the same phys
ics, can be written in the Ito interpretation using the w
known transformation rules@35,36#. The problem we study
here is different; we analyze the same multiplicative no
Langevin equation in a different interpretation, i.e., Ito i
stead of Stratonovich.

By repeating the mean-field-like approximations d
cussed in the Appendix, but using the Ito interpretation, o
obtains the same final results Eqs.~A3!, and ~A12! just by
substituting (s2/22a) by 2a. Therefore, for positive defi-
nite initial conditions, and positive values ofa ~i.e., values
for which the deterministic equation hasm50 as the only
solution!, there is nonontrivial solution. This indicates th
theNIOT disappears when intending the MN in the Ito sen,
and therefore, in the Stratonovich interpretation it is due
the effective shift of thea-dependent term in the stationar
probability distribution when multiplicative noise is intro
duced. In the same way, it is also straightforward to verify
performing a linear stability analysis that the homogene
solutionc50 is stable, contrary to what happens in the St
tonovich interpretation. The presence of an instability h
been identified as a key ingredient to generate noise indu
transitions~see@14# and references therein!, and therefore in
the absence of it no ordering is expected in the Ito interp
tation. We have verified this prediction in numerical simu
tions.

VI. COUPLING CONSTANT DEPENDENCE

In this section we pose the question of what is the mi
mum value of the coupling necessary to obtain a NIOT.
pointed out in@10,5#, the NIOT appears due to the interpla
between a short time instability and the presence of a sp
coupling that renders stable the generated nontrivial state
all the previously discussed models exhibiting a NIOT an
NIDT, there are critical values ofD below which no ordering
is possible. In order to determine whether there is a criticaD
in our model, we have studied it ind51 by changingD with
fixed a51 ~the forthcoming results are qualitatively inde
pendent of the value ofa). In Fig. 10 we show a sketchy
phase diagram, the outcome of systematic numerical sim
tions.

There is a large interval of values ofs for which the
system exhibits afirst-order transition atD50; i.e., as soon
as an arbitrarily small spatial coupling is switched on, t

-



s
io
r
t

s
g
s
N
so
n

l,
a

qua-
ed
nd

ak
n

der-
ul-
ta-
are
u-

tion
r

G.
R.
el-
the
the
-

.

ld
t for

can

ion
r-
of

b-

a-
d

as

1/

PRE 60 75RECENT RESULTS ON MULTIPLICATIVE NOISE
system gets ordered~for D50 the only stationary state i
m50). In Fig. 11 the order parameter is plotted as a funct
of 1/D for a value ofs in this interval; observe how even fo
values as small asD51027, m takes a large value of abou
0.15.

The fact that there is a large interval for which the sy
tems become ordered as soon as a spatial couplin
switched on, a property that was absent in all the previou
studied models for NIOT, is a new indication that the M
equation is the minimal model for NIOT, and that the as
ciated ordering mechanism is not mixed up with other u
necessary ingredients.

For values ofs out of the previously discussed interva
the system exhibits asecond-orderphase transitions at
value ofD,Dc(s), definingbD by

m}~D2Dc!
bD, ~18!

we obtain Dc50.09460.003 andbD50.0860.03 for the
particular choice of parametersa5s55.

FIG. 10. Schematic phase diagram in the plane (s,D) for the
MN Langevin equation. The rightmost line of second-order ph
transitions moves to the right asa is reduced, and goes tò in the
limit a50, indicating that the NIDT disappears.

FIG. 11. Order parameterm as a function of 1/D for s510 and
a51. The curve converges to a constant for large values ofD
~this is for small couplings!, indicating that atD50 there is a
first-order phase transition.
n

-
is

ly

-
-

VII. CONCLUSIONS

We have presented some recent results on Langevin e
tions with multiplicative noise. In particular, we have studi
numerically the presence of two different regimes: weak a
strong noise regimes, ind53. All the predicted scaling laws
and relations with KPZ exponents in their respective we
coupling and strong coupling fixed points are verified. O
the other hand, we have shown that the noise-induced or
ing transition associated with Langevin equations with m
tiplicative noise is specific to the Stratonovich represen
tion, and that these noise-induced ordering transitions
obtained even for arbitrarily small values of the spatial co
pling constant, supporting the fact that the Langevin equa
with pure multiplicative noise is the minimal model fo
noise-induced ordering transitions.
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APPENDIX

In this Appendix we present some different mean-fie
approximations to evaluate the order parameter exponen
both a50 anda.0.

Defining the averaged magnetization asm, in the limit of
large dimensionalities the discretized Laplacian operator
be written as

¹2c51/2d (
j ,N.N.

c j2c i'm2c i . ~A1!

Using this approximation, and determiningm in a self-
consistent way, it is possible to obtain an analytical solut
of the Langevin equation. In what follows we present diffe
ent calculations corresponding to infinite and finite values
the spatial couplingD, respectively. In both cases the o
tained value of the critical exponentba is 1/p.

1. Infinite spatial coupling limit: D˜`

Using the previous approximation, writing down the st
tionary probability distribution, solution of the associate
Fokker-Planck equation@35,36#, and imposing the self-
consistent requirementm5^c&, we obtain

e
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m5

E
I
dcc expE

0

c

dc
F1D~m2c!2GG8/2

G2/2

E
I
dc expE

0

c

dc
F1D~m2c!2GG8/2

G2/2

, ~A2!

where F5F(c)52ac2pcp11 (G5G(c)5cA12ac2)
is the deterministic~noise! part of Eq.~1!. For large values of
D the integral can be evaluated in the saddle point appr
mation @5,10#, giving

m5F1

p S s2

2
2aD G1/p

. ~A3!

FIG. 12. The solution,m, of the self-consistency equation is th
intersection point betweeny5 f (m) @where f (m) represents the
function on the right-hand side of Eq.~A5!# andy5m.

FIG. 13. m as a function ofs in mean-field theory witha50.
The points here correspond to the intersection of the curves in
previous figure with the linem5 f (m). The critical point is located
at sc

252.
i-

The NIOT transition is predicted ats2/25a with an associ-
ated exponentba5bs51/p.

2. Finite spatial coupling

In order to make sure that the previous result is not due
the approximation involved in consideringD→`, we
present here an analogous calculation for finite values oD.
In this case, the associated asymptotic stationary probab
is

P`}c212(2/s2)(a1D)expS 2
2Dm

s2c
D expS 2

2

s2
cpD ,

~A4!

where m has to be fixed self-consistently by imposingm
5^c&. This is

he

FIG. 14. Solution of the mean-field theory fora.0. Observe
that contrary to what happens in Fig. 13, here the intersection p
between the curves for different values ofs and the straight line
y5m reaches a maximum value after which it starts decreasing

FIG. 15. m as a function ofs in mean-field theory witha.0.
The points here correspond to the intersection of the curves in
previous figure with the linem5 f (m). The critical point is located
at sc

252.
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m5

E
0

`

dcc22(a1D)/s2
expS 2

2Dm

s2c
2

2

s2
cpD

E
0

`

dcc2122(a1D)/s2
expS 2

2Dm

s2c
2

2

s2
cpD .

~A5!

The numerical solution of this last equation for parame
valuesa51, D51, andp51 is shown in Fig. 12 and Fig
13.

In order to derive the exponentba in this MF approxima-
tion we define the following change of variables:

t5
1

c
, a5

2

s2
, g5

2

s2
~a1D !, m5

2Dm

s2
.

~A6!

Equation~A5! can be written as

m

aD
521/]m lnH E

0

`

dt tg22 expF2mt2
a

tpG J . ~A7!

Introducing a Gaussian transformation, the integral in
previous expression can be rewritten as

E
0

`

dt tg221p/2 exp@2mt#E
2`

1`

dh expF2
tph2

4a
1 ih G

5m12gE
2`

1`

dh exp~ ihA4amp!E
0

`dt

t
tg1p/2 21

3exp$2t2tph2%

5m12gE
0

`

dh cos~hA4amp!E
0

` dt

t
tg1p/221

3exp$2t2tph2%

5m12gH H0
(p)S g1

p

2
21D22ampH 1

(p)S g1
p

2
21D

1•••J , ~A8!

where we have expanded the cosine function up to sec
order, and we have defined

H n
(p)~d!5E

0

`

h2nGp~d,h2!, ~A9!

Gp~d,h2!5E
0

` dt

t
td exp$2t2tph2% ~A10!
r

e

nd

for d.0. This calculation is valid only ifg1p/2.1. At the
end of the calculation we will verify that this constraint
verified. Equation~A7! can be simply expressed as

aD52ap

H1
(p)S g1

p

2
21D

H0
(p)S g1

p

2
21Dmp

1~g21!. ~A11!

From this we find the solutionm50 corresponding tom
50 and if s2/2 2a>0 a second solution exists with

m5
s2

2D S H0
(p)

2H1
(p)D 1/pF1

p S s2

2
2aD G1/p

}S s2

2
2aD 1/p

.

~A12!

This solution confirms the results obtained in theD→`
case; namelyac5s2/2, for a>0, sc

252a, and bs5ba

51/p, which is consistent with the requirementg1p/2.0
for all the values ofp rendering consistent the calculation.

3. Infinite coupling limit for a>0

For completeness’ sake let us present here the mean-
analysis in the case in whicha.0. In this subsection we
evaluate the infinite coupling limit.

The solutionm50 is unstable fors2.2a, and the new
stable solution is

m5F s222a

~p!~s211!
G 1/p

. ~A13!

Let us note that this approximation predicts a NIOT at t
same point the pure MN equation~with a50) does, namely
s25a/2, but contrary to the pure model the order parame
does not grow indefinitely by increasing noise amplitud
Instead it saturates to a valuem5(p)21/p.

4. Finite coupling for a>0

In the case of finite couplingD anda.0 we have that the
asymptotic probability defined in the interval 0<c<1 is
~for p51)

P`~c!}c2[112(a1D)/s2] S 12c

11c D 2Dm/s2

3~12c2!21/21(a1D11/s2)expF2
2Dm

s2c
G .

~A14!

The self-consistency equation is obtained equatingm to
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E
0

1

dcc22(a1D)/s2S 12c

11c D 2Dm/s2

~12c2!21/21(a1D11/s2)e22Dm/s2c

E
0

1

c2[112(a1D)/s2] S 12c

11c D 2Dm/s2

~12c2!21/21(a1D11/s2)e22Dm/s2c

. ~A15!

Both of the integrals exhibit a singularity atc51, but they are integrable. It is straightforward verifying that in the limits
→`, m→0, and therefore for finite values ofD this approximation predicts both a NIOT~also located ats252a) and a NIDT
~see Figs. 14 and 15!.
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